Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Cytoskeleton (Hoboken) ; 81(2-3): 127-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37792405

RESUMO

The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells. However, biochemical studies showed that UNC-87 and CLIK-1 are different in their ability to bundle actin filaments. In this study, I extended comparison between UNC-87 and CLIK-1 and found additional differences in vitro and in vivo. Although UNC-87 and CLIK-1 bound to actin filaments similarly, UNC-87, but not CLIK-1, bound to myosin and inhibited actomyosin ATPase in vitro. In striated muscle, UNC-87 and CLIK-1 were segregated into different subregions within sarcomeric actin filaments. CLIK-1 was concentrated near the actin pointed ends, whereas UNC-87 was enriched toward the actin barbed ends. Restricted localization of UNC-87 was not altered in a clik-1-null mutant, suggesting that their segregated localization is not due to competition between the two related proteins. These results suggest that the two calponin-related proteins have both common and distinct roles in regulating actin filaments.


Assuntos
Proteínas de Caenorhabditis elegans , Músculo Estriado , Animais , Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto de Actina/metabolismo , Músculo Estriado/metabolismo , Músculo Esquelético/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
2.
Skelet Muscle ; 13(1): 20, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044436

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene and loss of the protein dystrophin, which ultimately leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Among the developed therapeutic strategies for DMD, gene therapy approaches partially restore micro-dystrophin or quasi-dystrophin expression. However, despite extensive attempts to develop definitive therapies for DMD, the standard of care remains corticosteroid, which has only palliative benefits. Animal models have played a key role in studies of DMD pathogenesis and treatment development. The golden retriever muscular dystrophy (GRMD) dog displays a phenotype aligning with the progressive course of DMD. Therefore, canine studies may translate better to humans. Recent studies suggested that nicotinamide adenine dinucleotide (NAD+) cellular content could be a critical determinant for striated muscle function. We showed here that NAD+ content was decreased in the striated muscles of GRMD, leading to an alteration of one of NAD+ co-substrate enzymes, PARP-1. Moreover, we showed that boosting NAD+ content using nicotinamide (NAM), a natural NAD+ precursor, modestly reduces aspects of striated muscle disease. Collectively, our results provide mechanistic insights into DMD.


Assuntos
Músculo Estriado , Distrofia Muscular de Duchenne , Masculino , Cães , Animais , Humanos , Distrofia Muscular de Duchenne/patologia , Distrofina/genética , NAD/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Músculo Estriado/patologia
3.
J Chem Inf Model ; 63(11): 3462-3473, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37204863

RESUMO

Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium-binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering the systolic calcium concentration, thereby strengthening the cardiac function. Here, we examined the effect of our previously identified calcium-sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR-derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This integrated structural-biochemical-physiological approach led to the identification of three novel low-affinity binders, which had similar binding affinities to the known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 µM.


Assuntos
Músculo Estriado , Troponina C , Troponina C/química , Cálcio/metabolismo , Músculo Estriado/metabolismo , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047237

RESUMO

Contraction in striated muscle is classically described as regulated by calcium-mediated structural changes in the actin-containing thin filaments, which release the binding sites for the interaction with myosin motors to produce force. In this view, myosin motors, arranged in the thick filaments, are basically always ready to interact with the thin filaments, which ultimately regulate the contraction. However, a new "dual-filament" activation paradigm is emerging, where both filaments must be activated to generate force. Growing evidence from the literature shows that the thick filament activation has a role on the striated muscle fine regulation, and its impairment is associated with severe pathologies. This review is focused on the proposed mechanical feedback that activates the inactive motors depending on the level of tension generated by the active ones, the so-called mechanosensing mechanism. Since the main muscle function is to generate mechanical work, the implications on muscle mechanics will be highlighted, showing: (i) how non-mechanical modulation of the thick filament activation influences the contraction, (ii) how the contraction influences the activation of the thick filament and (iii) how muscle, through the mechanical modulation of the thick filament activation, can regulate its own mechanics. This description highlights the crucial role of the emerging bi-directional feedback on muscle mechanical performance.


Assuntos
Músculo Esquelético , Músculo Estriado , Animais , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Vertebrados/metabolismo , Sarcômeros/metabolismo , Miosinas/metabolismo , Contração Muscular/fisiologia
5.
Clin Genet ; 103(6): 617-624, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36843357

RESUMO

The Popeye domain-containing protein 3 (POPDC3), a transmembrane protein with a unique cyclic adenosine monophosphate (cAMP) binding site, is widely expressed in mammalian tissues, with the highest levels of expression in skeletal muscle. POPDC3 plays a key role in many physiological and pathological processes and is considered a candidate biomarker and potential therapeutic target of cancer. In addition, POPDC3 gene variants have been associated with limb-girdle muscular dystrophy (LGMD) type 26. However, there are only a few studies on the biological role of POPDC3, interacting proteins, potential downstream targets, and regulated signaling pathways. Therefore, this review focuses on the structure of POPDC3 protein, interacting molecules, and the role and mechanism in cancer, and in cardiac and skeletal muscle, and to review the current research progress of POPDC3 and propose possible future study directions.


Assuntos
Músculo Estriado , Distrofia Muscular do Cíngulo dos Membros , Neoplasias , Animais , Humanos , Moléculas de Adesão Celular/genética , Homeostase , Mamíferos/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo
6.
Sci Rep ; 13(1): 270, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609526

RESUMO

LIM domain-binding 3 (LDB3) is a member of the Enigma family of PDZ-LIM proteins. LDB3 has been reported as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mechanosensory actin cytoskeleton remodeling. This study shows that LDB3 is broadly expressed in the central and peripheral nervous system of human and mouse. LDB3 is predominantly expressed in the adult stages compared to early development and at a significantly higher level in the spinal cord than in the brain. As in skeletal muscle and heart, LDB3 is extensively alternatively spliced in the neurons. Three novel splice isoforms were identified suggesting splicing-dependent regulation of LDB3 expression in the nervous system. Expression of LDB3 in the motor cortex, cerebellum, spinal motor neuron, peripheral nerve, and neuromuscular junction in addition to skeletal muscle indicates important roles for this PDZ-LIM family protein in motor planning and execution. Moreover, expression in the hippocampal neurons suggests roles for LDB3 in learning and memory. LDB3 interactors filamin C and myotilin are also expressed in the spinal motor neuron, nerve, and neuromuscular junction, thereby providing the basis for neurogenic manifestations in myopathies associated with mutations in these so-called muscle proteins.


Assuntos
Proteínas com Domínio LIM , Músculo Estriado , Camundongos , Humanos , Animais , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Ligação Proteica , Proteínas Musculares/metabolismo , Fatores de Transcrição/metabolismo , Sistema Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(5): e2207615120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36696446

RESUMO

Contraction in striated muscle is initiated by calcium binding to troponin complexes, but it is now understood that dynamic transition of myosin between resting, ordered OFF states on thick filaments and active, disordered ON states that can bind to thin filaments is critical in regulating muscle contractility. These structural OFF to ON transitions of myosin are widely assumed to correspond to transitions from the biochemically defined, energy-sparing, super-relaxed (SRX) state to the higher ATPase disordered-relaxed (DRX) state. Here we examined the effect of 2'-deoxy-ATP (dATP), a naturally occurring energy substrate for myosin, on the structural OFF to ON transitions of myosin motors in porcine cardiac muscle thick filaments. Small-angle X-ray diffraction revealed that titrating dATP in relaxation solutions progressively moves the myosin heads from ordered OFF states on the thick filament backbone to disordered ON states closer to thin filaments. Importantly, we found that the structural OFF to ON transitions are not equivalent to the biochemically defined SRX to DRX transitions and that the dATP-induced structural OFF to ON transitions of myosin motors in relaxed muscle are strongly correlated with submaximal force augmentation by dATP. These results indicate that structural OFF to ON transitions of myosin in relaxed muscle can predict the level of force attained in calcium-activated cardiac muscle. Computational modeling and stiffness measurements suggest a final step in the OFF to ON transition may involve a subset of DRX myosins that form weakly bound cross-bridges prior to becoming active force-producing cross-bridges.


Assuntos
Cálcio , Músculo Estriado , Animais , Suínos , Cálcio/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Cálcio da Dieta
8.
Hum Mol Genet ; 32(2): 177-191, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35925868

RESUMO

Mutations in LMNA, the gene encoding A-type lamins, cause laminopathies-diseases of striated muscle and other tissues. The aetiology of laminopathies has been attributed to perturbation of chromatin organization or structural weakening of the nuclear envelope (NE) such that the nucleus becomes more prone to mechanical damage. The latter model requires a conduit for force transmission to the nucleus. NE-associated Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes are one such pathway. Using clustered regularly interspaced short palindromic repeats to disrupt the Nesprin-1 KASH (Klarsicht, ANC-1, Syne Homology) domain, we identified this LINC complex protein as the predominant NE anchor for microtubule cytoskeleton components, including nucleation activities and motor complexes, in mouse cardiomyocytes. Loss of Nesprin-1 LINC complexes resulted in loss of microtubule cytoskeleton proteins at the nucleus and changes in nuclear morphology and positioning in striated muscle cells, but with no overt physiological defects. Disrupting the KASH domain of Nesprin-1 suppresses Lmna-linked cardiac pathology, likely by reducing microtubule cytoskeleton activities at the nucleus. Nesprin-1 LINC complexes thus represent a potential therapeutic target for striated muscle laminopathies.


Assuntos
Laminopatias , Músculo Estriado , Animais , Camundongos , Proteínas dos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Membrana/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Matriz Nuclear/genética , Microtúbulos/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Músculo Estriado/metabolismo , Laminopatias/metabolismo
9.
Nat Commun ; 13(1): 6058, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229433

RESUMO

Sustained muscle contraction occurs through interactions between actin and myosin filaments within sarcomeres and requires a constant supply of adenosine triphosphate (ATP) from nearby mitochondria. However, it remains unclear how different physical configurations between sarcomeres and mitochondria alter the energetic support for contractile function. Here, we show that sarcomere cross-sectional area (CSA) varies along its length in a cell type-dependent manner where the reduction in Z-disk CSA relative to the sarcomere center is closely coordinated with mitochondrial network configuration in flies, mice, and humans. Further, we find myosin filaments near the sarcomere periphery are curved relative to interior filaments with greater curvature for filaments near mitochondria compared to sarcoplasmic reticulum. Finally, we demonstrate variable myosin filament lattice spacing between filament ends and filament centers in a cell type-dependent manner. These data suggest both sarcomere structure and myofilament interactions are influenced by the location and orientation of mitochondria within muscle cells.


Assuntos
Músculo Estriado , Sarcômeros , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Camundongos , Mitocôndrias , Contração Muscular , Músculo Estriado/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo
10.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743185

RESUMO

Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo.


Assuntos
Demência Frontotemporal , Músculo Estriado , Miosite de Corpos de Inclusão , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Mutação , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Proteostase/genética , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Exp Cell Res ; 408(2): 112865, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637763

RESUMO

Protein homeostasis (proteostasis) in multicellular organisms depends on the maintenance of force-bearing and force-generating cellular structures. Within myofibrillar Z-discs of striated muscle, isoforms of synaptopodin-2 (SYNPO2/myopodin) act as adapter proteins that are engaged in proteostasis of the actin-crosslinking protein filamin C (FLNc) under mechanical stress. SYNPO2 directly binds F-actin, FLNc and α-actinin and thus contributes to the architectural features of the actin cytoskeleton. By its association with autophagy mediating proteins, i.e. BAG3 and VPS18, SYNPO2 is also engaged in protein quality control and helps to target mechanical unfolded and damaged FLNc for degradation. Here we show that deficiency of all SYNPO2-isoforms in myotubes leads to decreased myofibrillar stability and deregulated autophagy under mechanical stress. In addition, isoform-specific proteostasis functions were revealed. The PDZ-domain containing variant SYNPO2b and the shorter, PDZ-less isoform SYNPO2e both localize to Z-discs. Yet, SYNPO2e is less stably associated with the Z-disc than SYNPO2b, and is dynamically transferred into FLNc-containing myofibrillar lesions under mechanical stress. SYNPO2e also recruits BAG3 into these lesions via interaction with the WW domain of BAG3. Our data provide evidence for a role of myofibrillar lesions as a transient quality control compartment essential to prevent and repair contraction-induced myofibril damage in muscle and indicate an important coordinating activity for SYNPO2 therein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas dos Microfilamentos/genética , Músculo Esquelético/metabolismo , Estresse Mecânico , Proteínas de Transporte Vesicular/genética , Citoesqueleto de Actina/genética , Actinina/genética , Actinas/genética , Animais , Autofagia/genética , Linhagem Celular , Citoesqueleto/genética , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Estriado/metabolismo , Miofibrilas/genética , Miofibrilas/metabolismo , Domínios PDZ/genética , Isoformas de Proteínas/genética , Sinaptofisina/genética
12.
Elife ; 102021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34569933

RESUMO

Regulated thin filaments (RTFs) tightly control striated muscle contraction through calcium binding to troponin, which enables tropomyosin to expose myosin-binding sites on actin. Myosin binding holds tropomyosin in an open position, exposing more myosin-binding sites on actin, leading to cooperative activation. At lower calcium levels, troponin and tropomyosin turn off the thin filament; however, this is antagonised by the high local concentration of myosin, questioning how the thin filament relaxes. To provide molecular details of deactivation, we used single-molecule imaging of green fluorescent protein (GFP)-tagged myosin-S1 (S1-GFP) to follow the activation of RTF tightropes. In sub-maximal activation conditions, RTFs are not fully active, enabling direct observation of deactivation in real time. We observed that myosin binding occurs in a stochastic step-wise fashion; however, an unexpectedly large probability of multiple contemporaneous detachments is observed. This suggests that deactivation of the thin filament is a coordinated active process.


Assuntos
Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Imagem Individual de Molécula/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Músculo Estriado/metabolismo , Ligação Proteica , Processos Estocásticos , Troponina/metabolismo
13.
Cell Rep ; 36(8): 109601, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433058

RESUMO

Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.


Assuntos
Citoesqueleto de Actina/metabolismo , Cofilina 1/metabolismo , Destrina/metabolismo , Lamina Tipo A/metabolismo , Laminopatias/metabolismo , Músculo Estriado/metabolismo , Sarcômeros/metabolismo , Adolescente , Adulto , Animais , Linhagem Celular , Criança , Humanos , Lamina Tipo A/genética , Laminopatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Estriado/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mutação , Fosforilação , Transdução de Sinais , Adulto Jovem
14.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360941

RESUMO

Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that help to understand their key role in life processes. Interest and importance of PL homeostasis is growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked to human diseases. We here review diseases that involve deregulation of PL homeostasis and present a predominantly muscular phenotype.


Assuntos
Músculo Estriado/metabolismo , Fosfolipídeos/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Músculo Estriado/fisiologia , Fosfolipídeos/química
15.
Physiol Rev ; 101(4): 1561-1607, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33733879

RESUMO

The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.


Assuntos
Metabolismo Energético/fisiologia , Músculo Estriado/metabolismo , Animais , Humanos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Células Musculares/metabolismo
16.
J Gen Physiol ; 153(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740038

RESUMO

Microtubules tune cytoskeletal stiffness, which affects cytoskeletal mechanics and mechanotransduction of striated muscle. While recent evidence suggests that microtubules enriched in detyrosinated α-tubulin regulate these processes in healthy muscle and increase them in disease, the possible contribution from several other α-tubulin modifications has not been investigated. Here, we used genetic and pharmacologic strategies in isolated cardiomyocytes and skeletal myofibers to increase the level of acetylated α-tubulin without altering the level of detyrosinated α-tubulin. We show that microtubules enriched in acetylated α-tubulin increase cytoskeletal stiffness and viscoelastic resistance. These changes slow rates of contraction and relaxation during unloaded contraction and increased activation of NADPH oxidase 2 (Nox2) by mechanotransduction. Together, these findings add to growing evidence that microtubules contribute to the mechanobiology of striated muscle in health and disease.


Assuntos
Músculo Estriado , Tubulina (Proteína) , Acetilação , Mecanotransdução Celular , Microtúbulos/metabolismo , Músculo Estriado/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
17.
J Biol Chem ; 296: 100395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33567340

RESUMO

Chronic glucocorticoid exposure causes insulin resistance and muscle atrophy in skeletal muscle. We previously identified phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1) as a primary target gene of skeletal muscle glucocorticoid receptors involved in the glucocorticoid-mediated suppression of insulin action. However, the in vivo functions of Pik3r1 remain unclear. Here, we generated striated muscle-specific Pik3r1 knockout (MKO) mice and treated them with a dexamethasone (DEX), a synthetic glucocorticoid. Treating wildtype (WT) mice with DEX attenuated insulin activated Akt activity in liver, epididymal white adipose tissue, and gastrocnemius (GA) muscle. This DEX effect was diminished in GA muscle of MKO mice, therefore, resulting in improved glucose and insulin tolerance in DEX-treated MKO mice. Stable isotope labeling techniques revealed that in WT mice, DEX treatment decreased protein fractional synthesis rates in GA muscle. Furthermore, histology showed that in WT mice, DEX treatment reduced GA myotube diameters. In MKO mice, myotube diameters were smaller than in WT mice, and there were more fast oxidative fibers. Importantly, DEX failed to further reduce myotube diameters. Pik3r1 knockout also decreased basal protein synthesis rate (likely caused by lower 4E-BP1 phosphorylation at Thr37/Thr46) and curbed the ability of DEX to attenuate protein synthesis rate. Finally, the ability of DEX to inhibit eIF2α phosphorylation and insulin-induced 4E-BP1 phosphorylation was reduced in MKO mice. Taken together, these results demonstrate the role of Pik3r1 in glucocorticoid-mediated effects on glucose and protein metabolism in skeletal muscle.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Glucocorticoides/farmacologia , Glucose/metabolismo , Resistência à Insulina , Músculo Estriado/efeitos dos fármacos , Músculo Estriado/metabolismo , Atrofia Muscular/metabolismo , Animais , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Modelos Animais de Doenças , Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Estriado/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
18.
J Gen Physiol ; 153(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275758

RESUMO

Myosin-binding protein C (MyBP-C) is a critical regulator of muscle performance that was first identified through its strong binding interactions with myosin, the force-generating protein of muscle. Almost simultaneously with its discovery, MyBP-C was soon found to bind to actin, the physiological catalyst for myosin's activity. However, the two observations posed an apparent paradox, in part because interactions of MyBP-C with myosin were on the thick filament, whereas MyBP-C interactions with actin were on the thin filament. Despite the intervening decades since these initial discoveries, it is only recently that the dual binding modes of MyBP-C are becoming reconciled in models that place MyBP-C at a central position between actin and myosin, where MyBP-C alternately stabilizes a newly discovered super-relaxed state (SRX) of myosin on thick filaments in resting muscle and then prolongs the "on" state of actin on thin filaments in active muscle. Recognition of these dual, alternating functions of MyBP-C reveals how it is central to the regulation of both muscle contraction and relaxation. The purpose of this Viewpoint is to briefly summarize the roles of MyBP-C in binding to myosin and actin and then to highlight a possible new role for MyBP-C in inducing and damping oscillatory waves of contraction and relaxation. Because the contractile waves bear similarity to cycles of contraction and relaxation in insect flight muscles, which evolved for fast, energetically efficient contraction, the ability of MyBP-C to damp so-called spontaneous oscillatory contractions (SPOCs) has broad implications for previously unrecognized regulatory mechanisms in vertebrate striated muscle. While the molecular mechanisms by which MyBP-C can function as a wave maker or a wave breaker are just beginning to be explored, it is likely that MyBP-C dual interactions with both myosin and actin will continue to be important for understanding the new functions of this enigmatic protein.


Assuntos
Proteínas de Transporte , Músculo Estriado , Animais , Músculo Estriado/metabolismo , Miosinas/metabolismo , Vertebrados/metabolismo
19.
Exp Cell Res ; 398(1): 112388, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221314

RESUMO

Previous work with cultured cells has shown transcription of muscle genes by serum response factor (SRF) can be stimulated by actin polymerization driven by proteins of the formin family. However, it is not clear if endogenous formins similarly promote SRF-dependent transcription during muscle development in vivo. We tested whether formin activity promotes SRF-dependent transcription in striated muscle in the simple animal model, Caenorhabditis elegans. Our lab has shown FHOD-1 is the only formin that directly promotes sarcomere formation in the worm's striated muscle. We show here FHOD-1 and SRF homolog UNC-120 both support muscle growth and also muscle myosin II heavy chain A expression. However, while a hypomorphic unc-120 allele blunts expression of a set of striated muscle genes, these genes are largely upregulated or unchanged by absence of FHOD-1. Instead, pharmacological inhibition of the proteasome restores myosin protein levels in worms lacking FHOD-1, suggesting elevated proteolysis accounts for their myosin deficit. Interestingly, proteasome inhibition does not restore normal muscle growth to fhod-1(Δ) mutants, suggesting formin contributes to muscle growth by some alternative mechanism. Overall, we find SRF does not depend on formin to promote muscle gene transcription in a simple in vivo system.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Forminas/metabolismo , Músculo Estriado/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proliferação de Células , Forminas/genética , Fator de Resposta Sérica/genética
20.
J Cutan Pathol ; 48(2): 237-246, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32804407

RESUMO

Smooth muscle hamartoma (SMH) and striated muscle hamartoma (STH) are anomalous proliferations of smooth muscle or striated muscle, respectively, in anatomic sites where these tissues are normally present. To date, only limited cases have been reported describing these lesions. In this study, we sought to characterize the clinicopathologic features of both SMH and STH. A total of 27 cases of SMH and 12 cases of STH from 1990 to 2020 were identified. SMH cases had a slight male predominance (63%) and a mean age of presentation of 20 years (range: 4 months-91 years), with a mean size of 9.3 mm (±13.3). In contrast, STH were equally distributed in gender, with a mean age of presentation of 40 years (range: 3 months-66 years) and a mean size of 5.7 mm (±3.6). SMH were more commonly located in the torso and extremities (70%) and STH in the head and neck area (92%). One case of SMH recurred after 1.1 years and in the initial diagnosis the lesion was present at the tissue edge. None of the cases of STH had a recurrence. We present the largest cohort of SMH and STH, and report the first case of a recurrent SMH, suggesting the importance of obtaining a clean margin for these lesions.


Assuntos
Hamartoma , Neoplasias de Cabeça e Pescoço , Neoplasias Musculares , Músculo Liso , Músculo Estriado , Adolescente , Adulto , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Hamartoma/metabolismo , Hamartoma/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Lactente , Masculino , Neoplasias Musculares/metabolismo , Neoplasias Musculares/patologia , Músculo Liso/metabolismo , Músculo Liso/patologia , Músculo Estriado/metabolismo , Músculo Estriado/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...